工业机器人技术专业人才培养方案

一、学制、层次、学习形式、招生对象及入学要求

学制:学制三年

层次: 专科

学习形式: 函授

招生对象: 高中(中职/技校)毕业生,同等学历毕业生

入学要求:参加成人高考并达到学校本专业录取分数线

二、培养目标与培养规格

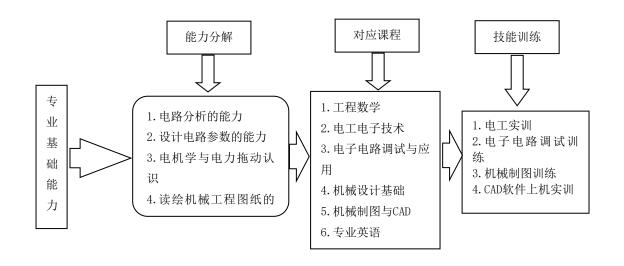
本专业以服务广州、东莞、惠州地区和广东省经济社会发展为宗旨,面向电子信息、汽车、家电、制药、新能源、机械加工、包装等智能制造业,培养主要从事企业自动化生产线中工业机器人工作站的装配、现场编程、调试维护、故障诊断、系统集成等生产技术管理工作,以及工业机器人技术销售服务工作,具有职业岗位(群)所需的基础知识及专业技能、具有较强综合职业能力的高素质技术技能型人才。

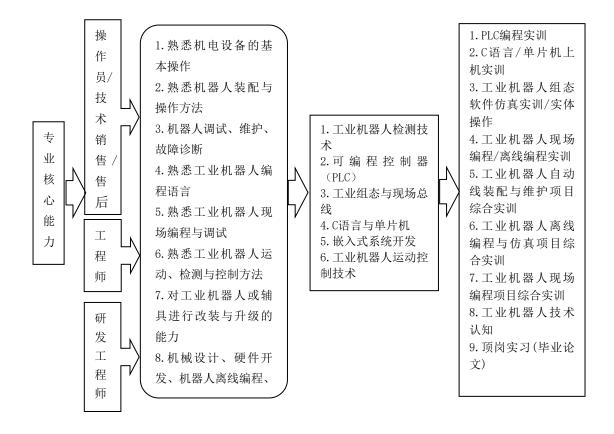
1. 能力目标

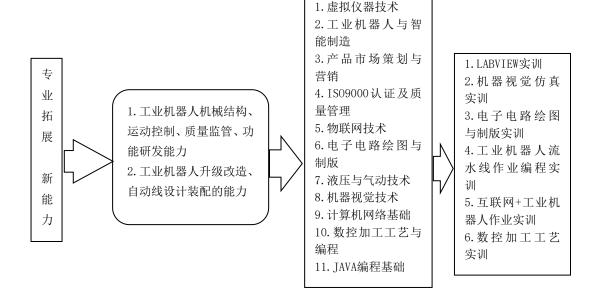
- (1) 具备读懂工业机器人以及相关集成装备的机械结构图的能力;
- (2) 具备正确分析工业机器人的液压、气动、电气系统图的能力;
- (3) 具备正确使用电工、电子常用工具和仪表的能力;
- (4) 具备正确拆装、调试、维护工业机器人及其相关集成装备的能力;
- (5) 具备使用相关编程语言对工业机器人进行编程与调试的能力:
- (6) 具备诊断与维修工业机器人常见故障的能力;
- (7) 具备阅读工业机器人相关英文操作手册的能力;
- (8) 具备对工业机器人进行初步自动化改造和简单自动线设计的能力。

2. 知识目标

- (1) 掌握机械制图、电气制图的基础知识;
- (2) 掌握工业机器人的基础知识:
- (3) 掌握电路分析、电力电子技术、电工技术、电气控制的基础知识;
- (4) 掌握传感器的选择以及应用的相关知识;
- (5) 掌握电力拖动、电机传动的基础知识;
- (6) 掌握液压与气动方面的基础知识;
- (7) 掌握单片机和 C 语言的基础知识;
- (8) 掌握 PLC 控制的基础知识;
- (9) 熟悉工业机器人辅具设计、制造、装配的知识;
- (10) 熟悉工业机器人上位机及相关通讯的知识;
- (11) 熟悉工业机器人实时监测、故障诊断的知识;
- (12) 掌握简单包含机器人作业单元的自动线的设计、装配、调试的基础知识;
- (13) 熟悉产品营销与企业管理方面的基础知识。


3. 素质目标


- (1) 具备良好的政治思想和法律道德素质;
- (2) 具备良好的科学文化素质以及创新精神;
- (3) 具备一定的人文社会科学素养和艺术修养;
- (4) 具有良好的心理素质、健康的体魄以及人际交往的能力;
- (5) 具备良好的职业道德和敬业精神。


三、专业核心能力与就业岗位指向

专业核心能力	就业岗位指向			
1. 熟悉机械与电气设备的相关标准与操作方式;				
2. 掌握多种(按岗位要求)工业机器人的装配与操作方法;	目标就业岗:			
3. 熟悉工业机器人的调试方法与步骤;	1. 工业机器人现场装配、操			
4. 熟悉工业机器人及其控制设备的维护方法;	作、初步调试、维护技术人			
5. 能够对工业机器人的常见故障进行诊断;	员/技术销售/技术售后			
6. 熟悉工业机器人的各项功能与应用领域,并掌握相关的市场运营与产品推广方法。	2. 工业机器人现场操作、编			
7. 熟练掌握工业机器人编程语言;	程、调试、维修技术工程师			
8. 能够对工业机器人的故障进行诊断与修复;				
9. 能够对工业机器人进行现场编程以及调试;	拓展就业岗:			
10. 对工业机器人运动学、动力学、环境感知、控制方面有一定程度的了解;	3. 工业机器人集成设计研			
11. 有能力对工业机器人或辅具进行简单的改装与初步升级;	发工程师			
12. 掌握电力拖动、电机传动方面的知识;				
13. 熟悉机械设计、硬件开发、机器人离线编程、仿真模拟等方面的知识;				
14. 能够设计研发集成工业机器人的自动线。				

四、课程体系与课程设置

五、专业核心课程简介

课程名称	主要教学内容	技能考核项目与要求
小生·17/1	工女拟于门台	以此与似州口司女孙
工业机器人 检测技术	1. 测量方法与误差分析 2. 电阻、电容、电感式传感器 3. 热电偶 4. 光电式传感器 5. 霍尔传感器 6. 压电式传感器 7. 超声波传感器 8. 集成/数字/Smart 传感器 9. 传感器的选择与相关抗扰技术	1. 掌握测量方法与误差分析的方法 2. 了解各种参量的测量方法(力、压力、距离、位移、扭矩、应变速度、加速度、温度、湿度、密度、光照强度、频率、振动、电磁量、离子浓度等指标) 3. 了解各类传感器的工作原理(电阻式、电容式、电感式、热电偶、光电效应、红外传输、霍尔效应、压电式、超声波式以及各类集成传感器等) 3. 具备选择、应用、简单设计传感器的能力
可编程控制 器(PLC)	1. PLC 介绍 2. 输入设备与输出执行器 3. PLC 编程 4. 程序定时器 5. 程序计数器 6. 算数、移动、转换、比较、程序控制 指令 7. 寻址 8. 高级 PLC 指令与应用	1. 掌握 PLC 的基本结构和原理 2. 掌握 PLC 梯形图编程方法 3. 掌握 PLC 定时器、计数器的使用 4. 掌握 PLC 特殊控制指令的使用 5. 具备编写具有一定功能程序的能力
C 语言与单 片机	*C语言部分 1.数据、变量与常量 2.字符串式化输入输出 3.运算符、表达式和语句 4.循环 5.分育 I/O 和输入确认 7.函数 8.数组和指针 9.字符储、链接和内存管理 11.文件 12.结构和其他数据形式 13.位操作 14.C预处理和C库 15.高级数部分 1.单片机机地址指令 2.总存储器 4.定时/计数器 5.串行口通信 6.中断控制	C语言 1. 掌握C变量、数据类型等基本概念 2. 掌握字符串、数组、指针等基本操作对象 3. 掌握循环、分支等基本编程思想 4. 具备结合单片机编写具有一定功能函数的能力单片机 1. 掌握单片机的基本结构、总线等基本知识 2. 掌握单片机定时器、中断控制等使用方法 3. 掌握单片机串行口通信的相关知识

嵌入式系统 开发	1. 嵌入式系统基础 2. 嵌入式处理器的体系结构与异常处理 3. 嵌入式处理器指令系统 4. 具体型号处理器的功能与应用(如S3C2410A) 5. 嵌入式操作系统 6. 开发工具的使用(如RealViewMDK环境下的ARM开发工具的应用) 7. 相关任务开发	1. 掌握嵌入式系统的基本概念和嵌入式系统的开发环境 2. 掌握软件开发工具的选择与使用 3. 掌握嵌入式处理器的体系结构以及相关应用选型 4. 掌握嵌入式处理器的指令系统和ARM以及THUMB状态下的指令集 5. 掌握嵌入式操作系统的基本概念和常见的嵌入式操作系统,以及最广泛的Linux操作系统6. 了解ARM 开发工具 7. 能够进行并独自完成相关任务的开发作业
工业机器人 运动控制技术	1. 闭环控制的直流调速系统 2. 双闭环直流调速系统 3. 直流调速数字控制系统 4. 可逆直流调速系统 5. 异步电机变压调速系统 6. 笼式电机变压变频调速系统 7. 绕线电机转子双馈调速系统 8. 同步电机变压变频调速系统 9. 伺服控制	1. 掌握电机学的基础知识 2. 掌握直流电机控制方面的基础知识 3. 掌握交流电机控制方面的基础知识 4. 对变频调速有一定的了解

六、毕业要求

修完教学计划要求的课程(共83学分),成绩合格。

七、专业教学团队基本要求

1. 本专业专任教师

- (1) 具有良好的职业道德;
- (2) 具备高等学校教师资格证,本科或研究生以上学历、讲师以上职称;
- (3) 具有较好教学能力和课程开发能力;
- (4) 具备扎实的工业机器人技术专业知识;
- (5) 具备较好的科研能力和社会服务能力;

2. 本专业兼职教师

- (1) 具有良好的职业道德;
- (2) 熟悉工业机器人检测技术、可编程控制器 (PLC)、工业组态与现场总线、C语言与单片机、嵌入式系统开发、工业机器人运动控制技术;
 - (3) 具备企业工作经验,实际从事工业机器人技术相关工作两年以上;
 - (4) 具有较好教学能力。

3. 本专业目前教学团队的基本情况

本专业方向教师团队 80%具有"双师"素质,其中专任教师 8 人,兼职教师 2 名,专兼职比例为 4: 1。

- (1) 职称结构:正高1名,副高3名,高级比例40%,中级6名,比例60%。
- (2) 知识结构:本科学历老师达到100%,博士2名,硕士7名。
- (3) 年龄结构: 平均年龄 38 岁。

八、实践教学条件基本要求

1. 满足专业实训教学设备和实训场地的基本要求

根据本专业人才培养要求,专业实践教学主要包括专业基础能力实训、专业核心技能训练、专业综合实践。专业实践教学实训设备主要包括工业机器人实训工作站、工业机器人离线编程仿真系统、PLC 实训装置等设备等。

2. 本专业现有校内实训基本情况

基地名称	课程关系(主要功能)	主要实训项目
电子产品设计中心	工业机器人检测技术、C语言与单片机、 电工电子技术、机械制图与CAD	单片机系统应用设计项目验证性实训;电子电路设计仿真实训;电气绘图实训。
电子产品调测中心	机器人检测技术、工业机器人运动控制技术、工业机器人离线编程与仿真项目综合 实训、物联网技术	单片机技术综合实训;传感器应用项目综合实训; 多自由度机器人关节运动控制实训、直线运动控制 实训、圆弧运动控制实训、加减速约束控制实训、 机器人坐标系建立实训。
EDA 工程中心	机器人检测技术、C 语言与单片机、工业组态与现场总线	电子电路单项基础技能实训;工业组态应用项目实训;智能产品设计实训。
智能结制中心	PLC 控制技术、工业机器人技术基础、工业组态与现场总线	PLC+人机界面综合实训、运动控制器编程及实训、 单片机控制步进电机运动实训、伺服电机驱动器+ 伺服电机接线及使用实训。
电子产品创新创业中	工业机器人离线编程与仿真项目综合实训、电子产品创新设计与制作、各类竞赛培训、项目、课题研发、对外培训、技术服务等。	工业机器人离线编程与仿真项目综合实训、各类竞赛培训、项目、课题研发、对外培训、技术服务等。
机电液气一体化实训 室	液压与气动、电工电子技术	液压元件拆装实训、液压泵性能实训、节流调速回 路性能实训、节流阀和溢流阀性能实训、压力形成 原理实训、液压回路综合实训、液压泵一液压马达 容积调速性能实训、液压泵性能实训。
机电创新综合实训基 地	电工电子技术、PLC 控制技术、工业机器 人运动控制技术	PLC+人机界面综合实训、运动控制器编程及实训、 单片机控制步进电机运动实训、伺服电机驱动器+ 伺服电机接线及使用实训。
机械设计基础实训室	机械设计基础、机械制图与 CAD	机械结构与机械零件认知实训;绘制机械运动简图 实训;机械结构创新实训;齿轮参数测量实训;(轴 系零部件的搭接实训;机构组合搭接实训。
CAD/CAM 仿真实训室	机械制图与 CAD	了解 CAD/CAM 的基础知识,应用所学 CAD/CAM 软件进行二维图形构建、三维实体建模;
电工技能综合实训室	电工电子技术、PLC 控制技术	可编程控制器 (PLC) 编程、线路连接等实训;运用变频器进行参数设置、电机控制等实训;电机的继电器线路控制等实训;
电子产品基础教学中 心一实操调测室	电子电路调试与应用、嵌入式系统开发	电子电路基础实训、PCB 制版、电子产品调试与检修、仪器仪表的使用、电子元器件的识别与检测、 拆焊训练、电路设计与调试;

电子产品基础教学中 心一设计仿真室	电工电子技术、电子电路调试与应用	电路设计、虚拟仿真、电路图绘制、PCB设计、考证培训、与实操调测室结合可实现教、学、做一体化教学。
电子产品装配实训室	电工电子技术、电子电路调试与应用	电子产品装调的基本工艺和操作技能训练;电子产品装调基本工艺;电子产品综合组装工艺实训。
机器人基础应用实训 室(拟建)	工业机器人装配与维护项目综合实训、工业机器人离线编程与仿真项目综合实训、 机器人现场编程综合实训	机器人基本控制实训;机器人装配实训、离线编程 与维护实训、现场编程实训
机器人工艺应用与自 动线综合实训室(拟 建)	工业机器人现场编程项目综合实训、工业 机器人工艺应用综合实训、工业机器人自 动线综合实训	机器人参数调整实训、机器人搬运/堆垛实训、机器人点胶/焊接实训、机器人自动线装配与维护实训、机器人在线编程实训

九、教学时数及计划进程

详见附件:工业机器人技术专业教学时数及计划进程表。

十、其他必要的说明

无

广东科学技术职业学院工业机器人技术专业教学时数及计划进程表

层次:专科

专业: 工业机器人技术

学习形式:函授

课		层次: 专科	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○											沙形式:图 校	
程	序 号	课程名称	学时分配				各学期学时						考核方式		
			课程学分	总学时	理论	实践	自学	1	2	3	4	5	6	考试	考查
	1	毛泽东思想和中特理论概论	4	64	24	0	40	24							1
	2	马克思主义中国进程与青年学生 使命担当	1	20	8	0	12	8							1
综	3	形势与政策教育(1)	2	48	36	0	12	6	6	6	6	6	6		16
合 素	4	思想道德修养与法律基础	3	51	18	6	27		24						2
质 必	5	应用文写作	2	36	12	0	24	12							1
修	6	公共英语	10	180	60	0	120	30	30					12	
	7	计算机应用基础	4	72	12	12	48	24						1	
	8	创新创业教育实践	1	27	12	0	15	12						1	
	9	工程数学	2	48	30	6	12	36						1	
	10	电工电子技术	4	72	30	18	30		24	24				23	
业 生	11	电子电路调试与应用	7	132	24	24	84		24	24				23	
基础	12	机械设计基础	2	36	12	12	12			24				3	
	13	机械制图与CAD	3	54	24	12	18		36					2	
	14	专业英语	5	90	30	0	60				30			4	
	15	工业机器人检测技术	2	48	12	18	18			30				3	
	16	可编程控制器(PLC)	3	60	12	18	30			30				3	
业	17	工业组态与现场总线	2	48	12	18	18				30				4
核心	18	C语言与单片机	2	48	12	18	18				30			4	
	19	嵌入式系统开发	3	60	18	18	24				36				4
	20	工业机器人运动控制技术	3	60	18	18	24					36		5	
+	21	工业机器人自动线装配与维护项 目综合实训	3	60	6	18	36					24			5
业	22	工业机器人离线编程与仿真项目 综合实训	3	66	6	18	42					24			5
综合性	23	工业机器人现场编程项目综合实 训	3	66	6	18	42					24			5
1	24	工业机器人技术认知	3	66	6	18	36		24						2
践	25	顶岗实习(毕业论文)	6	108	0	54	54						54		6
	•	总计	83	1620	440	324	856	152	168	138	132	114	60		