数控技术专业人才培养方案

一、学制、层次、学习形式、招生对象及入学要求

学制:学制三年

层次: 专科

学习形式: 函授

招生对象: 高中(中职/技校)毕业生,同等学历毕业生入学要求:参加成人高考并达到学校本专业录取分数线

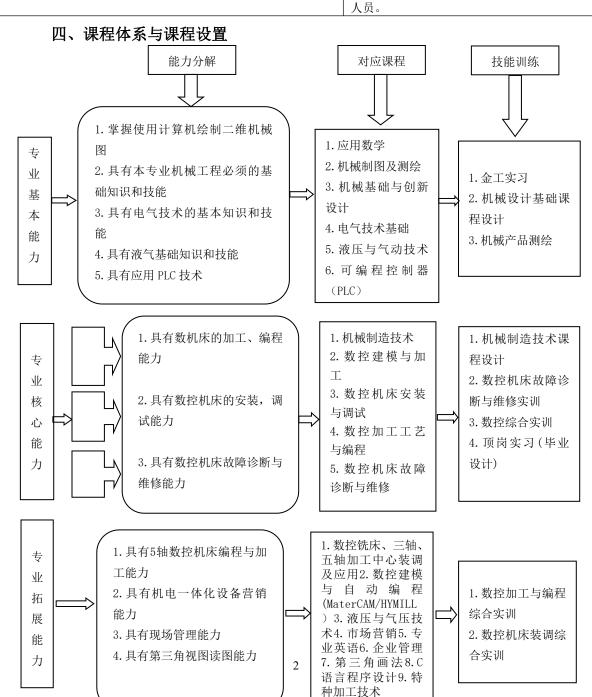
二、培养目标与培养规格

本专业面向广州、惠州地区的现代制造业,通过"真实项目驱动、教学做融合"的人才培养模式,培养掌握数控技术基本理论和专业知识,熟练掌握数控编程、数控加工操作、计算机软件绘图、数控机床的安装、调试和数控设备维护等技能,拥有社会主义市场经济观念、法制观念和职业道德,有良好的团队合作精神,适应智能制造行业数控技术岗位的(生产、服务和管理第一线)需要的高级技术技能型人才。

1. 能力目标

- (1) 具有机械制图基本技能,能读懂本岗位零部件装配图;
- (2) 具有使用计算机的能力和熟练应用 CAD/CAM 软件的能力;
- (3) 具有机械设计基本技能;
- (4) 具有钳工基本技能和普通机械加工技能;
- (5) 能读懂数控机床电气装配图、电气原理图、电气接线图;
- (6) 具有液压及气动控制基本技能;
- (7) 能熟练应用 PLC:
- (8) 能进行数控机床加工工艺的编制;
- (9) 能进行技术文件的编制;
- (10) 具有数控车床、数控铣床和加工中心编程及加工技能;
- (11) 具有电火花加工、线切割加工基本技能;
- (12) 具有数控车床、数控铣床和加工中心装调与维修技能;
- (13) 具有阅读本专业外文资料的基本能力,具有获取信息、自我继续学习的能力;
- (14) 有车间生产管理方面的基本能力。

2. 知识目标


- (1) 掌握本专业所需要的机械识图知识、公差知识基础知识;
- (2) 掌握本专业所必须需要的机械基础知识;
- (3) 掌握本专业所必须需要的材料及热处理基础知识;
- (4) 掌握本专业所必须需要的机床电气基础知识:
- (5) 掌握本专业所必须需要的液压与气动基础知识;
- (6) 掌握相关的国家技术标准。
- (7)掌握本专业所必须具备的数控机床的原理、结构,数控机床操作,数控加工程序编制,典型CAD/CAM软件应用等专业知识。

3. 素质目标

- (1) 具有爱国主义思想, 具有良好的法律意识和文化修养;
- (2) 具备人际交流能力、公共关系处理能力和协作精神;
- (3) 具有踏实肯干、任劳任怨的工作态度,不断追求知识、独立思考、勇于创新的科学精神;
 - (4) 具有高度的职业道德、敬业精神和团队精神;

三、专业核心能力与就业岗位指向

专业核心能力	就业岗位指向					
1. 具备机械设计与机械制造、机床控制的基本知识和素质;	目标就业岗:数控加工操作工、数控加工编程					
2. 熟悉数控机床的操作技能与质量控制方法;	员、数控机床安装调试工;					
3. 具备数控机床安装、调试与检测的初步能力;	拓展就业岗:数控机床售后服务工程师、机械					
4. 熟练掌握数控加工手工编程和自动编程的一般知识和技能;	(数控)加工工艺师、机械(数控)加工管理					
	人员。					
四、课程体系与课程设置						

五、专业核心课程简介

丑、 专业核心保住间介											
课程名称	主要教学内容	技能考核项目与要求									
数控建模与加工 UG	1. 实体建模 2. 自由曲面建模 3. 装配建模 4. UG 二维数控加工编程模块 5. UG 三轴联动固定轴铣加工 6. 操作编程模块 7. UG 车削加工编程模块	1. 利用计算机进行辅助建模; 2. 对典型零件进行自动编程; 3. 对刀具路径进行加工仿真; 4. 进行后置处理生成数控程序; 5. 进行程序数据传输。									
机械制造技术	1. 机械零件的结构工艺性; 2. 机械零件加工方法; 3. 机床、刀具、夹具、量具的使用; 4. 工程材料与热处理等方面的知识; 5. 典型零件工艺实施; 6. 机床通用夹具的选用原则和专用夹具的设计方法,刀具几何参数、材料、切削参数选用知识。	1. 机械加工工艺实施能力; 2. 机械加工工艺规程编制能力; 3. 专用夹具设计能力; 4. 零件精度检测能力。 5. 产品装配工艺实施与编制能力。									
数控机床安装与 调试	1. 常用金属切削机床的基本组成、工作原理、运动传动原理、机床分类; 2. 典型数控车床、铣床、加工中心等机床的性能、典型部件的工作原理、机床特点与调整方法。 3. 液压与气动系统执行与控制元件在数控机床中应用的基本知识,数控机床位置精度的基本知识和精度检测和调整。	1. 数控机床的机械结构特点、典型部件装配、调整能力; 2. 数控机床几何精度检测的基本方法,具备进行数控机床操作与维护的基本能力。									
数控加工工艺与 编程	1. 数控车床、数控铣床与加工中心编程的基本知识; 2. 数控加工的工艺分析与处理、数值计算、数控加工刀具选用、各种常用编程指令与操作规程; 3. 数控车削编程及加工(子程序,公、英制螺纹,固定循环,复杂零件)、; 4. 数控铣床编程及加工(基本编程,刀具半径及长度补偿,复杂轮廓,宏指令及典型曲面),	1. 数控车床程序编制基础及特点。 2. 数控车床基本编程指令和切削循环指令应用的知识。 3. 手工编写中等复杂程度零件的工艺设计、程序编制、刀具选择、对刀、试切调整、参数设置、运行报警识别处理等操作。 4. 对刀点、走刀路线和加工余量的确定方法。 5. 选择刀具和切削用量、工艺文件编制的方法。									
数控机床故障诊断 与维修	1. 数控机床故障诊断及维修概论 2. 数控机床维护及数控系统故障诊断 3. 数控机床的精度及性能检测 4. 数控机床机械结构故障诊断及维护 5. 数控机床输入 I/0 控制的故障诊断 6. 数控伺服系统故障诊断	1. 使用仪器进行机床故障诊断能力 2. 读懂机床电路图及相关技术文件能力 3. 机床抗干扰性能的分析能力 4. 主轴故障排查能力 5. 滚珠丝杠故障排查能力 6. 导轨副故障排查能力 7. 刀库及自动换刀装置故障排查能力 8. 液气压传动系统故障排查能力									

六、毕业要求

修完教学计划要求的课程(共91学分),成绩合格。

七、专业教学团队基本要求

1. 本专业专任教师

- (1) 具有良好的职业道德;
- (2) 具备高等学校教师资格证,本科或研究生以上学历、讲师以上职称;
- (3) 具有较好教学能力和课程开发能力;
- (4) 具备扎实的数控技术专业知识;
- (5) 具备较好的科研能力和社会服务能力;

2. 本专业兼职教师

- (1) 具有良好的职业道德;
- (2) 熟悉机械制造技术、数控建模与加工(UC)、数控机床安装与调试、数控加工工艺与编程、数控机床故障诊断与维修;
 - (3) 具备企业工作经验,实际从事数控技术相关工作两年以上;
 - (4) 具有较好教学能力。

3. 本专业目前教学团队的基本情况

本专业现在专任教师12名,企业兼职教师21名。

- (1) 主讲教师中 11 名教师是"双师型"教师,占专任教师的 90%。
- (2) 企业兼职教师占教师总数的比例为60%
- (3) 师资梯队中专业带头人 1 名,骨干教师 5 名,一般教师 6 名,专业带头人、骨干教师、一般教师比例基本达到 1: 5: 6。

八、实践教学条件基本要求

1. 简述应满足专业实训教学实训设备和实训场地的基本要求

为了能够达到数控技术专业人才培养方案的培养目标,取得较好的教学效果,实施本人才培养方案时应该提供必要的实践教学条件,应配备普通机械加工设备、数控加工设备、电工技能实训设备等必要的设备。

2. 本专业现有校内实训基本情况

序号	改加与有种	売加売口	设备配置要求				
	实训室名称	字训项目 	主要设备名称	数量			
1	车削实训室	1. 车工实训; 2. 机械制造实训。	普通车床	10			
2	钳工实训室	钳工实训	钳工工作台	10			
3	数控车削实训室	数控车削实训	数控车床	6			
4	数控铣削实训室	数控铣削实训	数控铣床	10			
5	数控编程室	数控编程实训	计算机	80			
6	数控虚拟加工实训室	1. 数控建模; 2. 数控虚拟加工。	计算机	80			
7	机电液气一体化实训室	1. 液压实训; 2. 气压实训。	液压气压试验台	3			
8	制图室	1. 计算机绘图; 2. 产品测绘。	绘图板 机械结构模型	80			

9	电工技能实训室	1. 中级电工; 2. 电气控制安装。	中级电工实训板 电气控制柜	30 10
10	自动控制实训室	1. PLC 编程; 2. 变频器调试。	20	
11	数控机床故障诊断与维修 实训室	数控机床故障诊断与维修	数控机床故障诊断实训台	5
12	机电创新综合实训基地	1. 机构创新; 2. 系统设计。	机电创新平台	6
13	机械基础实训中心	机械设计课程设计	机械设计设备	10

九、教学时数及计划进程

详见附件:数控技术专业教学时数及计划进程表。

十、其他必要的说明

无

广东科学技术职业学院数控技术专业教学时数及计划进程表

层次:专科

专业: 数控技术

学习形式:函授

课	左仇: 4件	会 II: 数 II D				25 - 2007/2014 - 007/2017 - 00						7.形式: 图技			
程数别	序 课程名和	课程名称	学时分配				各学期学时						考核方式		
			课程学分	总学时	理论	实践	白学	1	2	3	4	5	6	考试	考查
	1	毛泽东思想和中特理论概论	4	64	24	0	40	24							1
	2	马克思主义中国进程与青年学生 使命担当	1	20	8	0	12	8							1
综	3	形势与政策教育(1)	2	48	36	0	12	6	6	6	6	6	6		16
合素	4	思想道德修养与法律基础	3	51	18	6	27		24						2
质 必	5	应用文写作	2	36	12	0	24	12							1
修	6	公共英语	10	180	60	0	120	30	30					12	
	7	计算机应用基础	4	72	12	12	48	24						1	
	8	创新创业教育实践	1	27	12	0	15	12						1	
	9	数控加工入门	1	18	6	6	6	12							1
	10	应用数学	3	60	24	0	36	24						1	
亚 车	11	机械制图及测绘	4	84	18	12	54		30					2	
基础	12	机械基础与创新设计	2	48	24	12	12		36					2	
	13	电气技术基础	2	48	30	6	12			36				3	
	14	可编程控制器(PLC)	3	60	24	12	24			36				3	
	15	机械制造技术	3	54	36	0	18				36			4	
专	16	数控建模与加工(UG)	4	84	24	12	48			36				3	
业 核	17	数控机床安装与调试	4	72	24	12	36				36				4
心	18	数控加工工艺与编程	3	60	18	12	30			30				3	
	19	数控机床故障诊断与维修	3	54	24	0	30					24		5	
	20	金工实习	3	54	0	24	30				24				4
专	21	机械产品测绘	3	54	0	24	30		24						2
北線	22	机械设计与制作	3	54	0	24	30				24				4
	23	机械制造技术课程设计	3	54	0	24	30					24			5
安践	24	数控机床故障诊断与维修实训	3	54	0	24	30					24			5
哎	25	数控综合实训	11	200	0	60	140					60			5
	26	顶岗实习(毕业设计)	6	108	0	54	54						54		6
		总计	91	1718	434	336	948	152	150	144	126	138	60		